On a relation between information inequalities and group theory

نویسندگان

  • Terence Chan
  • Raymond W. Yeung
چکیده

In this paper, we establish a one-to-one correspondence between information inequalities and group inequalities. The major implication of our result is that we can prove information inequalities by proving the corresponding group inequalities, and vice versa. By giving a group-theoretic proof for all Shannon-type inequalities, we suggest that new inequalities could be discovered by making use of the rich set of tools in group theory. On the other hand, via a non-Shannon-type information inequality recently discovered by Zhang and Yeung, we obtain a new inequality in group theory whose meaning is yet to be understood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational inequalities on Hilbert $C^*$-modules

We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory  on  Hilbert $C^*$-modules is studied.

متن کامل

Bell inequalities and entanglement

We discuss general Bell inequalities for bipartite and multipartite systems, emphasizing the connection with convex geometry on the mathematical side, and the communication aspects on the physical side. Known results on families of generalized Bell inequalities are summarized. We investigate maximal violations of Bell inequalities as well as states not violating (certain) Bell inequalities. Fin...

متن کامل

SOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION

Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...

متن کامل

2 Bell Inequalities

We discuss general Bell inequalities for bipartite and multipartite systems, emphasizing the connection with convex geometry on the mathematical side, and the communication aspects on the physical side. Known results on families of generalized Bell inequalities are summarized. We investigate maximal violations of Bell inequalities as well as states not violating (certain) Bell inequalities. Fin...

متن کامل

A framework for linear information inequalities

We present a framework for information inequalities, namely, inequalities involving only Shannon’s information measures, for discrete random variables. A region in IR2 1, denoted by , is identified to be the origin of all information inequalities involving n random variables in the sense that all such inequalities are partial characterizations of . A product from this framework is a simple calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2002